On asymptotic Lebesgue's universal covering problem

Andriy Prymak (joint work with A. Arman, A. Bondarenko and D. Radchenko)

University of Manitoba

Lebesgue's universal covering problem

A measurable set $U \subset \mathbb{E}^n$ is called a **universal cover** if it contains a congruent copy of every set $A \subset \mathbb{E}^n$ of diameter 1.

1914: Lebesgue asked Pál in a letter what is the smallest area convex universal cover in the plane (n = 2).

Despite many contributions, the problem is still not solved. Records:

2005: Brass and Sharifi established a lower bound of 0.832.

2015: Baez, Bagdasaryan and Gibbs constructed a convex universal cover of area < 0.8441153.

2018 (pre-print): Gibbs constructed a convex universal cover of area < 0.8440935944.

Asymptotic Lebesgue's universal covering problem

 B_n — the unit ball in \mathbb{E}^n

 $\operatorname{Vol}(\cdot)$ — the Lebesgue measure in \mathbb{E}^n

Jung's theorem: $J_n:=r_nB_n$, where $r_n:=\sqrt{\frac{n}{2n+2}}$, is a universal cover in \mathbb{E}^n .

Our main result: any universal cover has volume at least $(1-o(1))^n \operatorname{Vol}(J_n)$, so J_n is an asymptotically optimal universal cover.

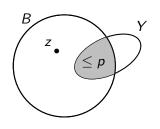
Theorem

Let U be a universal cover in \mathbb{E}^n . Then

$$\operatorname{Vol}(U) \ge \exp\left(-\sqrt{\left(\frac{5}{4} + o(1)\right) n \log n}\right) \operatorname{Vol}(J_n).$$

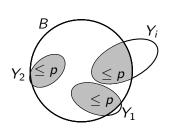
Path of the proof: assuming a minimal volume universal cover ${\it U}$ is too small, we construct a set of diameter < 1 which cannot be not covered by any congruent copy of ${\it U}$.

Proof: avoiding a single small set

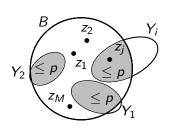


$$\nu(B) = 1, \ \nu(Y \cap B) \le p, \ 0$$

A ν -random single point from B avoids Y with prob. $\geq 1-p$.

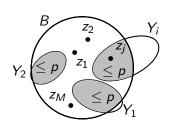


$$u(B) = 1, 0
 $u(Y_i \cap B) \le p \text{ for each } Y_i \in \mathcal{Y}.$$$



$$u(B) = 1, \ 0
 $u(Y_i \cap B) \le p \text{ for each } Y_i \in \mathcal{Y}.$
Take $M \text{ i.i.d. points in } B \text{ w.r.t. } \nu$:$$

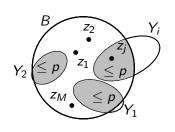
 $Z := \{z_1, \dots z_M\}.$



$$\nu(B) = 1, \ 0
 $\nu(Y_i \cap B) \le p \text{ for each } Y_i \in \mathcal{Y}.$$$

Take M i.i.d. points in B w.r.t. ν : $Z := \{z_1, \dots z_M\}$.

Then $|Z \cap Y_i| \sim Bi(M, \tilde{p})$, where $\tilde{p} = \nu(Y_i \cap B) \leq p$.

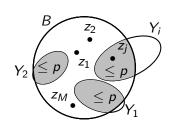


$$\nu(B) = 1, \ 0
 $\nu(Y_i \cap B) \le p \text{ for each } Y_i \in \mathcal{Y}.$$$

Take M i.i.d. points in B w.r.t. ν : $Z := \{z_1, \dots z_M\}$.

Then $|Z \cap Y_i| \sim Bi(M, \tilde{p})$, where $\tilde{p} = \nu(Y_i \cap B) \leq p$.

By Chernoff's bound: $\mathbb{P}(|Z \cap Y_i| \geq \frac{M}{2}) < (2ep)^{\frac{M}{2}}$.



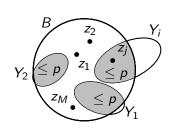
$$\nu(B) = 1, \ 0
 $\nu(Y_i \cap B) \le p \text{ for each } Y_i \in \mathcal{Y}.$$$

Take M i.i.d. points in B w.r.t. ν : $Z := \{z_1, \dots z_M\}$.

Then $|Z \cap Y_i| \sim Bi(M, \tilde{p})$, where $\tilde{p} = \nu(Y_i \cap B) \leq p$.

By Chernoff's bound: $\mathbb{P}(|Z \cap Y_i| \geq \frac{M}{2}) < (2ep)^{\frac{M}{2}}.$

By the union bound, if $|\mathcal{Y}|(2ep)^{\frac{M}{2}} < \frac{1}{2}$, then with prob. $\geq \frac{1}{2}$ $|Z \cap Y_i| < \frac{M}{2}$ for any Y_i .



$$\nu(B) = 1, \ 0
 $\nu(Y_i \cap B) \le p \text{ for each } Y_i \in \mathcal{Y}.$$$

Take M i.i.d. points in B w.r.t. ν : $Z := \{z_1, \dots z_M\}$.

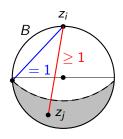
Then $|Z \cap Y_i| \sim Bi(M, \tilde{p})$, where $\tilde{p} = \nu(Y_i \cap B) \leq p$.

By Chernoff's bound: $\mathbb{P}(|Z \cap Y_i| \geq \frac{M}{2}) < (2ep)^{\frac{M}{2}}.$

By the union bound, if $|\mathcal{Y}|(2ep)^{\frac{M}{2}} < \frac{1}{2}$, then with prob. $\geq \frac{1}{2}$ $|Z \cap Y_i| < \frac{M}{2}$ for any Y_i .

In other words, if $|\mathcal{Y}|(2ep)^{\frac{M}{2}} < \frac{1}{2}$, then with prob. $\geq \frac{1}{2}$ any Y_i covers less than half of Z.

Proof: controlling diameter



B is close to J_n , ν is uniform on *B*.

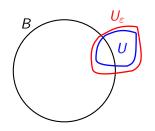
We need
$$\mathbb{P}(\|z_i - z_j\| \ge 1) < \frac{1}{2M}$$
.

Among $\binom{M}{2}$ pairs (z_i, z_j) the expected number of "bad" (far) pairs is $<\binom{M}{2}\frac{1}{2M}<\frac{M}{4}$, so by Markov's inequality, with prob. $>\frac{1}{2}$ there is $<\frac{M}{2}$ bad pairs. Removing a point from each pair, we get $X\subset Z$ with $|X|\geq \frac{M}{2}$ and $\operatorname{diam}(X)<1$ while $|X\cap Y_i|<\frac{M}{2}$ for each $Y_i\in\mathcal{Y}$.

Thus X cannot be covered by any $Y_i \in \mathcal{Y}$ and $\operatorname{diam}(X) < 1$.

We give a general framework in terms of measurable graphs for constructions cocliques that are hard to cover by members of given family of vertex subsets.

Proof: ε -thickening and discretization of covering family



For a minimal universal cover U, the family $\mathcal{I}_U = \{ T(U) : T(U) \cap B \neq \emptyset, T \text{ isometry} \}$ is infinite, so not suitable directly.

With proper $\varepsilon > 0$, we take $U_{\varepsilon} := U + \varepsilon B_n$ and show $\operatorname{Vol}(U_{\varepsilon}) < 2\operatorname{Vol}(U)$, and there exists $\mathcal{Y} \subset \mathcal{I}_{U_{\varepsilon}}$, $|\mathcal{Y}| < \frac{1}{2}n^{n^3}$, such that any set from \mathcal{I}_U is a subset of some $Y \in \mathcal{Y}$. Some ingredients used: a bound on diameter by Makeev, 1990; a bound on size of ε -net in orthogonal group by Szarek, 1981.

Now any subset of B of diameter ≤ 1 is covered by an element of \mathcal{Y} .

If $\operatorname{Vol}(U)$ is too small, with suitable choices of the radius of B and ε , p, M, we can probabilistically construct $X \subset B$ as above to obtain a contradiction.

Borsuk's number

Borsuk's number b(n) is the smallest integer such that any set of diameter 1 in \mathbb{E}^n can be covered by b(n) sets of smaller diameter.

 $b(n) \ge n+1$ by considering regular simplex in \mathbb{E}^n .

1933: Borsuk showed b(1) = 2, b(2) = 3, and asked if b(n) = n+1, $n \ge 3$? 1947: Perkal b(3) = 4.

1993: Kahn and Kalai proved $b(n) \ge 1.203^{\sqrt{n}}$ for $n \ge n_0$.

1999: Raigorodskii improved to $b(n) \ge 1.2255^{\sqrt{n}}$ for $n \ge n_0$.

2014: Bondarenko b(65) > 83, Jenrich b(64) > 70.

1988–89: Schramm; Bourgain and Lindenstrauss:
$$b(n) \leq \left(\sqrt{\frac{3}{2}} + o(1)\right)^n$$
.

Universal covers for estimates on Borsuk's number

For small n, partitioning a universal cover into pieces of diameter < 1 can give a good upper bound on b(n).

1920: Pál showed the regular hexagon circumscribed about unit disc is a universal cover, implying $b(2) \le 3$.

1955: Eggleston; 1957: Grünbaum used suitably truncated octahedra to obtain $b(3) \leq 4$.

1982: Lassak observed $J_n \cap (r_n u + B_n)$, ||u|| = 1, is a universal cover, and then proved $b(n) \leq 2^{n-1} + 1$, which remains best known for $4 \leq n \leq 17$.

Corollary

If a universal cover in \mathbb{E}^n is partitioned into M pieces of diameter ≤ 1 , then $M \geq (\sqrt{2} - o(1))^n$.

Proof: completion to bodies of constant width, isodiametric inequality and simple volume estimates.

Recall that $b(n) \le \left(\sqrt{\frac{3}{2}} + o(1)\right)^n$ Schramm; Bourgain and Lindenstrauss.

Asymptotic optimality of J_n for other measures

Mean width w(K) of a convex body K in \mathbb{E}^n is half the average length of a projection of K on a line, e.g. $w(B_n) = 1$.

1990 Makeev; 1998 Bezdek and Connelly:

 J_n minimizes **mean width** of **translative** universal covers.

For the general congruent (non-translative) universal covers J_n is not a minimizer of mean width or volume: $J_n \cap (r_n u + B_n)$, ||u|| = 1, is smaller.

Corollary

$$w(U) \ge (1 - o(1))w(J_n)$$
 for any convex universal cover U .

Proof: Urysohn's inequality $w(U) \ge \left(\frac{\operatorname{Vol}(U)}{\operatorname{Vol}(B_n)}\right)^{\frac{1}{n}}$.

Remark

Using Alexandrov inequality, the corollary can be extended to all quermassintegrals/intrinsic volumes, e.g. to the surface area.

More details at https://arxiv.org/abs/2512.04023.

Thank you!