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Borsuk's number

Borsuk's number b(n) is the smallest integer such that any set of diameter 1
in E" can be covered by b(n) sets of smaller diameter.

b(n) > n+ 1 by considering regular simplex in E".

Borsuk (1933) asked if b(n) = n+ 1 for all n?
Borsuk (1933): b(1) = 2 and b(2) = 3,
Perkal (1947): b(3) = 4.

Asymptotic lower bound: b(n) > cV7 for large n established by
Kahn and Kalai (1993): ¢ ~ 1.203,
Raigorodskii (1999): c ~ 1.2255.

Smallest known n with b(n) > n+ 1 is n = 64.



Asymptotic upper bound on b(n)

Schramm (1988), Bourgain and Lindenstrauss (1989):

)




Bourgain and Lindenstrauss'’s results

Let g(n) be the smallest number of balls of diameter < 1 needed to cover
an arbitrary set of diameter 1 in E". Clearly, b(n) < g(n).

Rogers (1965): g(n) < (v/2 4 o(1))"
Danzer (1965): g(n) > 1.003"

n
3
Bourgain and Lindenstrauss (1989): 1.0645" < g(n) < (\/;+ o(l)) :



lllumination and covering

Let K be a convex body in E". A point x € 9K is illuminated by a direction
€ € S"Lif the ray {x + &t : t > 0} intersects int(K).
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lllumination and covering

Let K be a convex body in E". A point x € 9K is illuminated by a direction
€ € S"Lif the ray {x + &t : t > 0} intersects int(K).

The illumination number /(K) is the minimal number of directions such that
every x € JK is illuminated by one of these directions.

Denote h(K) to be the smallest number N such that K can be covered by
N smaller homothetic copies of K.

Boltyanski (1960): /(K) = h(K) for any convex body K.
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lllumination and covering

Let K be a convex body in E". A point x € 9K is illuminated by a direction
€ € S"Lif the ray {x + &t : t > 0} intersects int(K).

The illumination number /(K) is the minimal number of directions such that
every x € JK is illuminated by one of these directions.

Denote h(K) to be the smallest number N such that K can be covered by
N smaller homothetic copies of K.

Boltyanski (1960): /(K) = h(K) for any convex body K.

Levi-Hadwiger-Gohberg-Markus's conjecture: /(K)= h(K) < 2"
with equality iff K is an affine copy of a cube.



Convex bodies of constant width

A convex body in E” has constant width, if its projection onto any line has

the same length. It is well-known that any set of diameter 1 is contained in
a convex body of constant width 1.



Convex bodies of constant width

A convex body in E” has constant width, if its projection onto any line has

the same length. It is well-known that any set of diameter 1 is contained in
a convex body of constant width 1.

Therefore, it suffices to consider only bodies of constant width when com-
puting the Borsuk’'s number b(n).



Schramm'’s upper bound on Borsuk's number

Define
h(n) :=sup{h(K)=I(K) : K is a convex body of constant width in E"}.

We have b(n) < h(n).

Schramm (1988): h(n) < (\/§+ 0(1))

The only known lower bound on h(n) was the same as for b(n):
h(n) > b(n) > 1.2255V" for large n.

Kalai (2015) asked: does there exist C > 1 with h(n) > C" for large n?
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Main result

We answer the question of Kalai in the affirmative.

c 1 ’
h(n) > Vnlogn <cos(7T/14))
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Main geometric ingredient

For fixed x € S™! and 0 < a < 7/6 define
Q(x,a) == {x}U{y eS"!:|x —y| =2cosa}.
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Main geometric ingredient

For fixed x € S™ ! and 0 < a < 7/6 define
Q(x,a) == {x}u{y e S"!:|x —y| =2cosa}.
For non-zero x,y € E”, let
O(x,y) = arccos(m).
For x €S"™ 1 and 0 < a < T, set
C(x,a) :={yeS"1:0(x,y) <a}.

Suppose 0 < a < 7/6, K is a convex body in E" s.t. diam K = 2 cos «

and for some x € S"~! we have Q(x,a) C K. Then x € K and any
direction ¢ € S9! illuminating x satisfies £ € C(—x, T — ).

12
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Main geometric ingredient

Suppose 0 < a < /6, K is a convex body in E" s.t. diam K = 2 cos«
and for some x € S"~! we have Q(x,a) C K. Then x € K and any
direction & € S9~1 illuminating x satisfies ¢ € C(—x, % — a).
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Main geometric ingredient

Suppose 0 < a < /6, K is a convex body in E" s.t. diam K = 2 cos «
and for some x € S"~1 we have Q(x,a) C K. Then x € OK and any
direction ¢ € S9! illuminating x satisfies £ € C(—x, =@k
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Main geometric ingredient

Suppose 0 < a < /6, K is a convex body in E" s.t. diam K = 2 cos«
and for some x € S"~! we have Q(x,a) C K. Then x € K and any
direction & € S9~1 illuminating x satisfies ¢ € C(—x, % — a).
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Main geometric ingredient

Suppose 0 < a < 7/6, K is a convex body in E" s.t. diam K = 2cos«
and for some x € S"~! we have Q(x,a) C K. Then x € OK and any
direction & € S9~1 illuminating x satisfies ¢ € C(—x, % — a).
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Separation required to control the diameter

For a finite X C S"7 1, let W(X) := U,ex Q(x, @).

Suppose 0 < o < /6 and X C S"L.
(i) IfO(x,y) < m—2a forall x,y € X, then diam X < 2cosa.

(ii) If4a < 6(x,y) <7 —6a for all distinct x,y € X,
then diam W(X) < 2 cos a.
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Thinly spread subsets of the sphere

Suppose 0 < ¢ < 7. Then for any sufficiently large n there exists a
collection X = {x1,...,xn} C S" ! with N > (s(i:n\{;)" such that

(@) ¢ < O(xi,x;) <m— forall i #j;

(b) {i:x € C(xi,p)} < Cnlogn for all x € S"~1.

v

If 1« denotes the spherical probability measure on S"~!, then up to a constant

factor u(C(x;,)) behaves like % for large n.



Thinly spread subsets of the sphere

Suppose 0 < ¢ < 7. Then for any sufficiently large n there exists a
collection X = {x1,...,xn} C S" ! with N > (s(i:n\{;)" such that

(@) ¢ < O(xi,x;) <m— forall i #j;

(b) {i:x € C(xi,p)} < Cnlogn for all x € S"~1.

Proof outline: Sample an appropriately selected number of uniformly i.i.d.
points from S"~1. By Boréczky and Wintsche (2003), which is the adapta-
tion of the ideas of Erdés and Rogers (1961/62) to S™1, the resulting set
Y satisfies (b) with high probability.

Certain probabilistic arguments show that some points that may violate (a)
can be removed from Y to obtain the desired X C Y.



Proof of the main result

o2 = ()

Proof: Use Lemma 3 with ¢ = ®7 to get a thinly spread X C S"1.
Construct W(X) = U,ex Q(x, @) with a = ;.

By Lemma 2 (ii) (separation lemma), diam (W(X)) = 2 cos a.

So there exists a body K D W(X) of constant width 2 cos .

Since ¢ = 5 — «, Lemma 3 (b) for —X in combination with Lemma 1

2
’ n
(illumination cap) imply /(K) > (Sicn\{j),,/(Cnlog n) = ﬁclogn <cos(;/14)> :

Glazyrin (>2023) noted that the base of the exponent WI/M) ~ 1.026

can be improved to % %(111 — v/33) & 1.047 by a slight modification of
the construction: choosing the bases of the cones from a concentric sphere

of smaller radius.
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New lower bound on g(n)

Recall that g(n) is the smallest number of balls of diameter < 1 needed to
cover an arbitrary set of diameter 1 in E”.

Bourgain and Lindenstrauss (1989): g(n) > 1.0645"

2

g(n) > m <% 2 ~1.1547)

=%

) (note that

Proof: Use Lemma 3 with ¢ = % to get a thinly spread X C Sn—1,
By Lemma 2 (i) (separation lemma) with o = Z, diam X < 2cos I = /3.
Any ball of diameter v/3 intersects S"~! by a cap of radius < ¢, so by

Lemma 3 (b) we need at least (SI'}fwn/(Cnlog n) = f|0gn (% " such

caps to cover X.
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Thinly spread subsets of the sphere

Denote u(y) := u(C(x,¢)), x € S™~L.

There is ng such that for any n > no, 1 € (0,3) and ¢ € (%, %) there
exists a collection X = {x,...,xy} C S"1 with N > m|n{4zl(?pg", 8u(¢)}
such that

(a) ¥ < 0(xi,x;) < m—1 forall i # j;

(b) |{i:x € C(x;, %)} < 400nlogn for all x € S"~1.

Lemma 3 is obtained when ) = ¢.



Thinly spread subsets of the sphere

There is ng such that for any n > ng, ¢ € (0, %) and ¢ G 1.7) there
exists X = {x1,...,xn} C S"1 with N > m|n{4"'°g” } such that

(v) 7 8u w)
(a) ¥ < 0(xi,x) < m—1 forall i # j;
(b) |{i:x € C(xi,¢)}| < 400nlogn for all x € S"~1.

Proof outline: Let Y be a set of M = (%1 uniformly i.i.d. points

from S"~1. By Boéréczky and Wintsche (2003), Y satisfies (b) w.h.p.
eForUCY,let B(U):={{u,v}:0(u,v)¢&[,m—],u,veU u+#v}.
A pair of points from Y is in B(Y) with probability p = 2u(%)).

Thus E(|IB(Y)]) < p 22 and 3 Y satisfying (b) with |B(Y)| < pM2.

o If pM < 1, then |B(Y)| < ¥, and a point from each pair in B(Y) can

be removed to obtain the deswed X C Y with N > % > 4’/1'(‘:5”.

o If pM > % draw T C Y selecting each point with probability ﬁ.

Then B(|T| = [B(T)]) > % — PM(520) = %5 = 5itay-
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[[lumination of convex bodies close to ball

For D > 1 let K}, be the family of all convex bodies K in [E” such that
B" Cc K C DB".
Naszédi (2016): for any fixed 1 < D < 1.116 and sufficiently large n
iD” < sup I(K) < (cn3/2 log n)D",
20 Keks
where the upper bound is valid for any D > 1.

Construction: convex hull of a discrete subset of DS"! and B".
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Spiky ball
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[[lumination of convex bodies close to the ball

For D > 1 let K}, be the family of all convex bodies K in [E” such that
B" Cc K C DB".

Naszddi (2016): for any fixed 1 < D < 1.116 and sufficiently large n

—D"< sup I(K) < (en*?log n)D",
20 Kekp

where the upper bound is valid for any D > 1.

Construction: convex hull of a discrete subset of DS"! and B".

Theorem 4

For any fixed 1 < D < \% (= 1.1547) and sufficiently large n

cv/nD" < sup I(K).
KeKp
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[llumination of bodies of constant width close to the ball

For D > 1 let W[ be the family of all convex bodies of constant width
K C E" such that
B" Cc K C DB".

For any fixed 1 < D < Wl/MH (= 1.0528) and sufficiently large n

2D \" 2D \"
< I(K) < (Cn®/21 —
Vi(prg) = s 1)< (@ ogn) (577 )

where the upper bound is valid for any D > 1.
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Covering by balls of smaller diameter

For K C W[ of width w let g(K) denote the smallest number of balls of
diameter less than w needed to cover K.

For any fixed 1 < D < ﬁ (=~ 1.366) and sufficiently large n

2D \" 2D \"
) < K) < (Cn¥/?] =
c\/ﬁ(DH) _Kseuvrégg( ) < (Cn ogn)<D+1> :

where the upper bound is valid for any D > 1.




Concluding remarks

Upper bounds in the last two theorems are achieved in a “universal” way:
illumination directions and covering balls do not depend on K, only on D.

Our constructions of bodies of constant width also provide the same ex-
ponential lower bounds for “mix and match” covering by balls of smaller
diameter and smaller homothets.

Can b(n) < (1/3/2+ o(1))" be improved using “mix and match” covering
by balls of smaller d/ameters and smaller homothets?

I(K) and g(K) have the same order for K € W}, when D is close to 1.

Is it true that I(K) = g(K) for any K of constant width? If not, are I(K)
and g(K) for constant width K C E" equivalent up to a factor polynomial
inn?
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