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Borsuk’s number

Borsuk’s number b(n) is the smallest integer such that any set of diameter 1
in En can be covered by b(n) sets of smaller diameter.

b(n) ≥ n + 1 by considering regular simplex in En.

Borsuk (1933) asked if b(n) = n + 1 for all n?
Borsuk (1933): b(1) = 2 and b(2) = 3,
Perkal (1947): b(3) = 4.

Asymptotic lower bound: b(n) ≥ c
√

n for large n established by
Kahn and Kalai (1993): c ≈ 1.203,
Raigorodskii (1999): c ≈ 1.2255.

Smallest known n with b(n) > n + 1 is n = 64.
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Asymptotic upper bound on b(n)

Schramm (1988), Bourgain and Lindenstrauss (1989):

b(n) ≤
(√

3
2 + o(1)

)n
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Bourgain and Lindenstrauss’s results

Let g(n) be the smallest number of balls of diameter < 1 needed to cover
an arbitrary set of diameter 1 in En. Clearly, b(n) ≤ g(n).

Rogers (1965): g(n) ≤ (
√

2 + o(1))n

Danzer (1965): g(n) ≥ 1.003n

Bourgain and Lindenstrauss (1989): 1.0645n ≤ g(n) ≤
(√

3
2 + o(1)

)n

.
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Illumination and covering
Let K be a convex body in En. A point x ∈ ∂K is illuminated by a direction
ξ ∈ Sn−1 if the ray {x + ξt : t ≥ 0} intersects int(K ).
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Illumination and covering
Let K be a convex body in En. A point x ∈ ∂K is illuminated by a direction
ξ ∈ Sn−1 if the ray {x + ξt : t ≥ 0} intersects int(K ).

The illumination number I(K ) is the minimal number of directions such that
every x ∈ ∂K is illuminated by one of these directions.

Denote h(K ) to be the smallest number N such that K can be covered by
N smaller homothetic copies of K .
Boltyanski (1960): I(K ) = h(K ) for any convex body K .
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Illumination and covering
Let K be a convex body in En. A point x ∈ ∂K is illuminated by a direction
ξ ∈ Sn−1 if the ray {x + ξt : t ≥ 0} intersects int(K ).

The illumination number I(K ) is the minimal number of directions such that
every x ∈ ∂K is illuminated by one of these directions.

Denote h(K ) to be the smallest number N such that K can be covered by
N smaller homothetic copies of K .
Boltyanski (1960): I(K ) = h(K ) for any convex body K .

Levi-Hadwiger-Gohberg-Markus’s conjecture: I(K )= h(K ) ≤ 2n

with equality iff K is an affine copy of a cube.
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Convex bodies of constant width
A convex body in En has constant width, if its projection onto any line has
the same length. It is well-known that any set of diameter 1 is contained in
a convex body of constant width 1.
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Convex bodies of constant width
A convex body in En has constant width, if its projection onto any line has
the same length. It is well-known that any set of diameter 1 is contained in
a convex body of constant width 1.

Therefore, it suffices to consider only bodies of constant width when com-
puting the Borsuk’s number b(n).
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Schramm’s upper bound on Borsuk’s number

Define

h(n) := sup{h(K )= I(K ) : K is a convex body of constant width in En}.

We have b(n) ≤ h(n).

Schramm (1988): h(n) ≤
(√

3
2 + o(1)

)n

The only known lower bound on h(n) was the same as for b(n):
h(n) ≥ b(n) ≥ 1.2255

√
n for large n.

Kalai (2015) asked: does there exist C > 1 with h(n) ≥ Cn for large n?
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Main result

We answer the question of Kalai in the affirmative.

Theorem 1

h(n) ≥ c√
n log n

(
1

cos(π/14)

)n
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Main geometric ingredient

For fixed x ∈ Sn−1 and 0 < α ≤ π/6 define
Q(x , α) := {x} ∪ {y ∈ Sn−1 : ‖x − y‖ = 2 cosα}.
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Main geometric ingredient

For fixed x ∈ Sn−1 and 0 < α ≤ π/6 define
Q(x , α) := {x} ∪ {y ∈ Sn−1 : ‖x − y‖ = 2 cosα}.

For non-zero x , y ∈ En, let
θ(x , y) := arccos( x ·y

‖x‖‖y‖).
For x ∈ Sn−1 and 0 < α < π, set

C(x , α) := {y ∈ Sn−1 : θ(x , y) ≤ α}.

Lemma 1

Suppose 0 < α ≤ π/6, K is a convex body in En s.t. diam K = 2 cosα
and for some x ∈ Sn−1 we have Q(x , α) ⊂ K. Then x ∈ ∂K and any
direction ξ ∈ Sd−1 illuminating x satisfies ξ ∈ C(−x , π2 − α).
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Main geometric ingredient
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Suppose 0 < α ≤ π/6, K is a convex body in En s.t. diam K = 2 cosα
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Separation required to control the diameter

For a finite X ⊂ Sn−1, let W(X ) :=
⋃

x∈X Q(x , α).

Lemma 2

Suppose 0 < α ≤ π/6 and X ⊂ Sn−1.
(i) If θ(x , y) ≤ π − 2α for all x , y ∈ X, then diam X ≤ 2 cosα.
(ii) If 4α ≤ θ(x , y) ≤ π − 6α for all distinct x , y ∈ X,

then diamW(X ) ≤ 2 cosα.
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Thinly spread subsets of the sphere

Lemma 3

Suppose 0 < ϕ < π
2 . Then for any sufficiently large n there exists a

collection X = {x1, . . . , xN} ⊂ Sn−1 with N ≥ c
√

n
(sinϕ)n such that

(a) ϕ ≤ θ(xi , xj) ≤ π − ϕ for all i 6= j ;
(b) |{i : x ∈ C(xi , ϕ)}| ≤ Cn log n for all x ∈ Sn−1.

If µ denotes the spherical probability measure on Sn−1, then up to a constant
factor µ(C(xi , ϕ)) behaves like (sinϕ)n

√
n for large n.
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Thinly spread subsets of the sphere

Lemma 3

Suppose 0 < ϕ < π
2 . Then for any sufficiently large n there exists a

collection X = {x1, . . . , xN} ⊂ Sn−1 with N ≥ c
√

n
(sinϕ)n such that

(a) ϕ ≤ θ(xi , xj) ≤ π − ϕ for all i 6= j ;
(b) |{i : x ∈ C(xi , ϕ)}| ≤ Cn log n for all x ∈ Sn−1.

Proof outline: Sample an appropriately selected number of uniformly i.i.d.
points from Sn−1. By Böröczky and Wintsche (2003), which is the adapta-
tion of the ideas of Erdős and Rogers (1961/62) to Sn−1, the resulting set
Y satisfies (b) with high probability.
Certain probabilistic arguments show that some points that may violate (a)
can be removed from Y to obtain the desired X ⊂ Y .
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Proof of the main result

Theorem 1

h(n) ≥ c√
n log n

(
1

cos(π/14)

)n

Proof: Use Lemma 3 with ϕ = 6π
14 to get a thinly spread X ⊂ Sn−1.

Construct W(X ) =
⋃

x∈X Q(x , α) with α = π
14 .

By Lemma 2 (ii) (separation lemma), diam (W(X )) = 2 cosα.
So there exists a body K ⊃ W(X ) of constant width 2 cosα.
Since ϕ = π

2 − α, Lemma 3 (b) for −X in combination with Lemma 1
(illumination cap) imply I(K ) ≥ c

√
n

(sinϕ)n /(Cn log n) = c′
√

n log n

(
1

cos(π/14)

)n
.

Glazyrin (≥2023) noted that the base of the exponent 1
cos(π/14) ≈ 1.026

can be improved to 1
4

√
1
6(111 −

√
33) ≈ 1.047 by a slight modification of

the construction: choosing the bases of the cones from a concentric sphere
of smaller radius.
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New lower bound on g(n)

Recall that g(n) is the smallest number of balls of diameter < 1 needed to
cover an arbitrary set of diameter 1 in En.

Bourgain and Lindenstrauss (1989): g(n) ≥ 1.0645n

Theorem 2

g(n) ≥ c√
n log n

(
2√
3

)n
(note that 2√

3 ≈ 1.1547)

Proof: Use Lemma 3 with ϕ = π
3 to get a thinly spread X ⊂ Sn−1.

By Lemma 2 (i) (separation lemma) with α = π
6 , diam X ≤ 2 cos π6 =

√
3.

Any ball of diameter
√

3 intersects Sn−1 by a cap of radius ≤ ϕ, so by
Lemma 3 (b) we need at least c

√
n

(sinϕ)n /(Cn log n) = c′
√

n log n

(
2√
3

)n
such

caps to cover X .
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Thinly spread subsets of the sphere

Denote µ(ϕ) := µ(C(x , ϕ)), x ∈ Sn−1.

Theorem 3
There is n0 such that for any n ≥ n0, ψ ∈ (0, π2 ) and ϕ ∈ ( 1

n ,
π
2 ) there

exists a collection X = {x1, . . . , xN} ⊂ Sn−1 with N ≥ min{4n log n
µ(ϕ) ,

1
8µ(ψ)}

such that
(a) ψ ≤ θ(xi , xj) ≤ π − ψ for all i 6= j ;
(b) |{i : x ∈ C(xi , ϕ)}| ≤ 400n log n for all x ∈ Sn−1.

Lemma 3 is obtained when ψ = ϕ.
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Thinly spread subsets of the sphere

Theorem 3
There is n0 such that for any n ≥ n0, ψ ∈ (0, π2 ) and ϕ ∈ ( 1

n ,
π
2 ) there

exists X = {x1, . . . , xN} ⊂ Sn−1 with N ≥ min{4n log n
µ(ϕ) ,

1
8µ(ψ)} such that

(a) ψ ≤ θ(xi , xj) ≤ π − ψ for all i 6= j ;
(b) |{i : x ∈ C(xi , ϕ)}| ≤ 400n log n for all x ∈ Sn−1.

Proof outline: Let Y be a set of M = d 8n log n
µ((1− 1

2n)ϕ)
e uniformly i.i.d. points

from Sn−1. By Böröczky and Wintsche (2003), Y satisfies (b) w.h.p.
• For U ⊂ Y , let B(U) := {{u, v} : θ(u, v) 6∈ [ψ, π − ψ], u, v ∈ U, u 6= v}.
A pair of points from Y is in B(Y ) with probability p = 2µ(ψ).
Thus E(|B(Y )|) ≤ p M2

2 and ∃ Y satisfying (b) with |B(Y )| < pM2.
• If pM ≤ 1

2 , then |B(Y )| < M
2 , and a point from each pair in B(Y ) can

be removed to obtain the desired X ⊂ Y with N ≥ M
2 ≥ 4n log n

µ(ϕ) .
• If pM > 1

2 , draw T ⊂ Y selecting each point with probability 1
2pM .

Then E(|T | − |B(T )|) ≥ 1
2p − pM2( 1

2pM )2 = 1
4p = 1

8µ(ψ) .
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Illumination of convex bodies close to ball
For D > 1 let Kn

D be the family of all convex bodies K in En such that
Bn ⊂ K ⊂ DBn.

Naszódi (2016): for any fixed 1 < D < 1.116 and sufficiently large n
1
20Dn ≤ sup

K∈Kn
D

I(K ) ≤ (cn3/2 log n)Dn,

where the upper bound is valid for any D > 1.

Construction: convex hull of a discrete subset of DSn−1 and Bn.
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Spiky ball
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Illumination of convex bodies close to the ball
For D > 1 let Kn

D be the family of all convex bodies K in En such that

Bn ⊂ K ⊂ DBn.

Naszódi (2016): for any fixed 1 < D < 1.116 and sufficiently large n

1
20Dn ≤ sup

K∈Kn
D

I(K ) ≤ (cn3/2 log n)Dn,

where the upper bound is valid for any D > 1.

Construction: convex hull of a discrete subset of DSn−1 and Bn.

Theorem 4
For any fixed 1 < D < 2√

3 (≈ 1.1547) and sufficiently large n

c
√

nDn ≤ sup
K∈Kn

D

I(K ).
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Illumination of bodies of constant width close to the ball

For D > 1 let Wn
D be the family of all convex bodies of constant width

K ⊂ En such that
Bn ⊂ K ⊂ DBn.

Theorem 5
For any fixed 1 < D < 1

2 cos(π/14)−1 (≈ 1.0528) and sufficiently large n

c
√

n
(

2D
D + 1

)n
≤ sup

K∈Wn
D

I(K ) ≤ (Cn3/2 log n)
(

2D
D + 1

)n
,

where the upper bound is valid for any D > 1.
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Covering by balls of smaller diameter

For K ⊂ Wn
D of width w let g(K ) denote the smallest number of balls of

diameter less than w needed to cover K .

Theorem 6
For any fixed 1 < D < 1√

3−1 (≈ 1.366) and sufficiently large n

c
√

n
(

2D
D + 1

)n
≤ sup

K∈Wn
D

g(K ) ≤ (Cn3/2 log n)
(

2D
D + 1

)n
,

where the upper bound is valid for any D > 1.
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Concluding remarks
Upper bounds in the last two theorems are achieved in a “universal” way:
illumination directions and covering balls do not depend on K , only on D.

Our constructions of bodies of constant width also provide the same ex-
ponential lower bounds for “mix and match” covering by balls of smaller
diameter and smaller homothets.

Question
Can b(n) ≤ (

√
3/2 + o(1))n be improved using “mix and match” covering

by balls of smaller diameters and smaller homothets?

I(K ) and g(K ) have the same order for K ∈ Wn
D when D is close to 1.

Question
Is it true that I(K ) = g(K ) for any K of constant width? If not, are I(K )
and g(K ) for constant width K ⊂ En equivalent up to a factor polynomial
in n?
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