Non-existence of \((76, 30, 8, 14)\) strongly regular graph and some structural tools

Andriy Prymak

joint work with Andrii Bondarenko and Danylo Radchenko
A finite, undirected, simple, \(k \)-regular graph \(G = (V, E) \) on \(v \) vertices is strongly regular with parameters \((v, k, \lambda, \mu)\) if \(|N(i) \cap N(j)| = \lambda \) for any two adjacent \(i, j \in V \) and \(|N(i) \cap N(j)| = \mu \) for any two non-adjacent \(i, j \in V \).
A finite, undirected, simple, \(k \)-regular graph \(G = (V, E) \) on \(v \) vertices is strongly regular with parameters \((v, k, \lambda, \mu)\) if \(|N(i) \cap N(j)| = \lambda\) for any two adjacent \(i, j \in V \) and \(|N(i) \cap N(j)| = \mu\) for any two non-adjacent \(i, j \in V \).

For example, Petersen graph is a \((10, 3, 0, 1)\) SRG.
A finite, undirected, simple, k-regular graph $G = (V, E)$ on v vertices is strongly regular with parameters (v, k, λ, μ) if $|N(i) \cap N(j)| = \lambda$ for any two adjacent $i, j \in V$ and $|N(i) \cap N(j)| = \mu$ for any two non-adjacent $i, j \in V$. For example, Petersen graph is a $(10, 3, 0, 1)$ SRG.

Strong regularity can be expressed in terms of the incidence matrix A as

$$AJ = kJ, \quad A^2 + (\mu - \lambda)A + (\mu - k)I = \mu J,$$

leading to $(v - k - 1)\mu = k(k - \lambda - 1)$ and the eigenvalues

$$k \quad \text{of multiplicity 1,}$$

$$r = \frac{1}{2} \left(\lambda - \mu + \sqrt{ (\lambda - \mu)^2 + 4(k - \mu) } \right) \quad \text{of multiplicity } f = \frac{1}{2} \left(v - 1 - \frac{2k + (v - 1)(\lambda - \mu)}{\sqrt{(\lambda - \mu)^2 + 4(k - \mu)}} \right),$$

$$s = \frac{1}{2} \left(\lambda - \mu - \sqrt{ (\lambda - \mu)^2 + 4(k - \mu) } \right) \quad \text{of multiplicity } g = \frac{1}{2} \left(v - 1 + \frac{2k + (v - 1)(\lambda - \mu)}{\sqrt{(\lambda - \mu)^2 + 4(k - \mu)}} \right).$$
A finite, undirected, simple, k-regular graph $G = (V, E)$ on v vertices is strongly regular with parameters (v, k, λ, μ) if $|N(i) \cap N(j)| = \lambda$ for any two adjacent $i, j \in V$ and $|N(i) \cap N(j)| = \mu$ for any two non-adjacent $i, j \in V$.

For example, Petersen graph is a $(10, 3, 0, 1)$ SRG.

Strong regularity can be expressed in terms of the incidence matrix A as

$$AJ = kJ, \quad A^2 + (\mu - \lambda)A + (\mu - k)I = \mu J,$$

leading to $(v - k - 1)\mu = k(k - \lambda - 1)$ and the eigenvalues

$$r = \frac{1}{2} \left(\lambda - \mu + \sqrt{(\lambda - \mu)^2 + 4(k - \mu)} \right) \text{ of multiplicity } f = \frac{1}{2} \left(v - 1 - \frac{2k + (v - 1)(\lambda - \mu)}{\sqrt{(\lambda - \mu)^2 + 4(k - \mu)}} \right),$$

$$s = \frac{1}{2} \left(\lambda - \mu - \sqrt{(\lambda - \mu)^2 + 4(k - \mu)} \right) \text{ of multiplicity } g = \frac{1}{2} \left(v - 1 + \frac{2k + (v - 1)(\lambda - \mu)}{\sqrt{(\lambda - \mu)^2 + 4(k - \mu)}} \right).$$

This defines a suitable family of parameters (v, k, λ, μ) for which the corresponding SRG may exist.
There are families and particular instances of positive and negative results on existence of SRG (see, e.g., electronically published tables by Brouwer).
There are families and particular instances of positive and negative results on existence of SRG (see, e.g., electronically published tables by Brouwer).

Unknown cases for small v:

(65, 32, 15, 16),
(69, 20, 7, 5),
(75, 32, 10, 16),
(76, 30, 8, 14) — our case,
(76, 35, 18, 14),
ten more cases with $85 \leq v \leq 100$.

There are families and particular instances of positive and negative results on existence of SRG (see, e.g., electronically published tables by Brouwer).

Unknown cases for small v:
(65, 32, 15, 16),
(69, 20, 7, 5),
(75, 32, 10, 16),
(76, 30, 8, 14) — our case,
(76, 35, 18, 14),
ten more cases with $85 \leq v \leq 100$.

Note that the complement of a (v, k, λ, μ) SRG is a $(v, v - 1 - k, v - 2k + \mu - 2, v - 2k + \lambda)$ SRG.
There are families and particular instances of positive and negative results on existence of SRG (see, e.g., electronically published tables by Brouwer).

Unknown cases for small v:
(65, 32, 15, 16),
(69, 20, 7, 5),
(75, 32, 10, 16),
(76, 30, 8, 14) — our case,
(76, 35, 18, 14),
ten more cases with $85 \leq v \leq 100$.

Note that the complement of a (v, k, λ, μ) SRG is a $(v, v - 1 - k, v - 2k + \mu - 2, v - 2k + \lambda)$ SRG.

Theorem. There is no $(76, 30, 8, 14)$ SRG.
Outline of the proof:

- K_4 is a subgraph of $(76, 30, 8, 14)$ SRG;
Outline of the proof:

- K_4 is a subgraph of $(76, 30, 8, 14)$ SRG;
- $(76, 30, 8, 14)$ SRG contains (as an induced subgraph) one of the three “larger” subgraphs.
Outline of the proof:

- K_4 is a subgraph of $(76, 30, 8, 14)$ SRG;
- $(76, 30, 8, 14)$ SRG contains (as an induced subgraph) one of the three “larger” subgraphs;
- eliminating the case of $(40, 12, 2, 4)$ SRG;
Outline of the proof:

- K_4 is a subgraph of $(76, 30, 8, 14)$ SRG;
- $(76, 30, 8, 14)$ SRG contains (as an induced subgraph) one of the three “larger” subgraphs;
- eliminating the case of $(40, 12, 2, 4)$ SRG;
- eliminating the case of K_{16};
Outline of the proof:

- K_4 is a subgraph of $(76, 30, 8, 14)$ SRG;
- $(76, 30, 8, 14)$ SRG contains (as an induced subgraph) one of the three “larger” subgraphs;
- eliminating the case of $(40, 12, 2, 4)$ SRG;
- eliminating the case of $\overline{K_{16}}$;
- eliminating the case of $K_{6,10}$.
Outline of the proof:

- K_4 is a subgraph of $(76, 30, 8, 14)$ SRG;
- $(76, 30, 8, 14)$ SRG contains (as an induced subgraph) one of the three “larger” subgraphs;
- eliminating the case of $(40, 12, 2, 4)$ SRG;
- eliminating the case of $\overline{K_{16}}$;
- eliminating the case of $K_{6,10}$.

Techniques:

- Euclidean representation of SRGs by systems of unit vectors;
Outline of the proof:

- K_4 is a subgraph of $(76, 30, 8, 14)$ SRG;
- $(76, 30, 8, 14)$ SRG contains (as an induced subgraph) one of the three "larger" subgraphs;
- eliminating the case of $(40, 12, 2, 4)$ SRG;
- eliminating the case of $\overline{K_{16}}$;
- eliminating the case of $K_{6,10}$.

Techniques:

- Euclidean representation of SRGs by systems of unit vectors;
- positive semidefiniteness (and rank) of Gram matrix;
Outline of the proof:

- \(K_4 \) is a subgraph of \((76, 30, 8, 14)\) SRG;
- \((76, 30, 8, 14)\) SRG contains (as an induced subgraph) one of the three “larger” subgraphs;
- eliminating the case of \((40, 12, 2, 4)\) SRG;
- eliminating the case of \(\overline{K_{16}}\);
- eliminating the case of \(K_{6,10}\).

Techniques:

- Euclidean representation of SRGs by systems of unit vectors;
- positive semidefiniteness (and rank) of Gram matrix;
- Cauchy-Shwartz inequality in the space of spherical harmonics;
Outline of the proof:

- K_4 is a subgraph of $(76, 30, 8, 14)$ SRG;
- $(76, 30, 8, 14)$ SRG contains (as an induced subgraph) one of the three “larger” subgraphs;
- eliminating the case of $(40, 12, 2, 4)$ SRG;
- eliminating the case of $\overline{K_{16}}$;
- eliminating the case of $K_{6,10}$.

Techniques:

- Euclidean representation of SRGs by systems of unit vectors;
- positive semidefiniteness (and rank) of Gram matrix;
- Cauchy-Shwartz inequality in the space of spherical harmonics;
- projections of Euclidean representation;
- various combinatorial counting arguments;
- two insignificant computer searches.
Euclidean representation \(\{x_i : i \in V\} \) of a SRG \(G \) in \(\mathbb{R}^g \)

\[A - sl \geq 0, \text{ therefore } A - sl = (z_i \cdot z_j)_{i,j \in V} \text{ for some } \{z_i : i \in V\} \subset \mathbb{R}^g; \]

define \(x_i := z_i / \| z_i \|, i \in V \).
Euclidean representation \(\{x_i : i \in V\} \) of a SRG \(G \) in \(\mathbb{R}^g \)

\[A - sl \geq 0, \text{ therefore } A - sl = (z_i \cdot z_j)_{i,j \in V} \text{ for some } \{z_i : i \in V\} \subset \mathbb{R}^g; \]

define \(x_i := z_i/\|z_i\|, \ i \in V \).

\[
 x_i \cdot x_j = \begin{cases}
 1, & \text{if } i = j, \\
 p, & \text{if } i \text{ and } j \text{ are adjacent,} \\
 q, & \text{otherwise,}
 \end{cases}
\]

where \(p = s/k \), and \(q = -(s+1)/(v-k-1) \).
Euclidean representation \(\{x_i : i \in V\} \) of a SRG \(G \) in \(\mathbb{R}^g \)

\(A - sl \geq 0 \), therefore \(A - sl = (z_i \cdot z_j)_{i,j \in V} \) for some \(\{z_i : i \in V\} \subset \mathbb{R}^g \); define \(x_i := z_i/\|z_i\|, i \in V \).

\[
x_i \cdot x_j = \begin{cases} 1, & \text{if } i = j, \\ p, & \text{if } i \text{ and } j \text{ are adjacent}, \\ q, & \text{otherwise}, \end{cases}
\]

where \(p = s/k \), and \(q = -(s + 1)/(v - k - 1) \).

For \((v, k, \lambda, \mu) = (76, 30, 8, 14)\), we have \(r^f = 2^{57} \) and \(s^g = (-8)^{18} \).

\(\ln \mathbb{R}^{18}, (p, q) = (-\frac{4}{15}, \frac{7}{45}) \).

\(\ln \mathbb{R}^{57}, (p, q) = (\frac{1}{15}, -\frac{1}{15}) \) (complement).
Positive semidefiniteness of Gram matrix

Let $\pi = \{ V_j \}_{j=1}^\ell$ be a partition of a subset $\tilde{V} \subset V$. Set $X_j := \sum_{t \in V_j} x_t$, $j = 1, \ldots, \ell$, and let $M = (X_i \cdot X_j)_{i,j=1}^\ell$.

We extensively used the following important inequality: $\det M \geq 0$.

Example: there is no K_5 in $(76, 30, 8, 14)$ SRG.

Recall that in \mathbb{R}^{18}, we have $(p, q) = (-4, 7)$. If V_1 are the vertices of K_5, with $\ell = 1$ we get a contradiction because $\det M = M_{1,1} = 5 + 20p = -1/3$.

6
Positive semidefiniteness of Gram matrix

Let $\pi = \{ V_j \}_{j=1}^\ell$ be a partition of a subset $\tilde{V} \subset V$.
Set $X_j := \sum_{t \in V_j} x_t$, $j = 1, \ldots, \ell$, and let $M = (X_i \cdot X_j)_{i,j=1}^\ell$.
If $a_{i,j}$ is the number of edges between V_i and V_j, $i \neq j$, and $a_{i,i}$ is the number of edges in the subgraph induced by V_i, then

$$M_{i,i} = |V_i| + 2a_{i,i}p + (|V_i||V_i| - 1) - 2a_{i,i}q,$$
$$M_{i,j} = a_{i,j}p + (|V_i||V_j| - a_{i,j})q.$$
Positive semidefiniteness of Gram matrix

Let $\pi = \{V_j\}_{j=1}^\ell$ be a partition of a subset $\tilde{V} \subset V$.

Set $X_j := \sum_{t \in V_j} x_t$, $j = 1, \ldots, \ell$, and let $M = (X_i \cdot X_j)_{i,j=1}^\ell$.

If $a_{i,j}$ is the number of edges between V_i and V_j, $i \neq j$,

and $a_{i,i}$ is the number of edges in the subgraph induced by V_i, then

$$M_{i,i} = |V_i| + 2a_{i,i}p + (|V_i|(|V_i| - 1) - 2a_{i,i})q, \quad M_{i,j} = a_{i,j}p + (|V_i||V_j| - a_{i,j})q.$$

We extensively used the following important inequality: $\det M \geq 0$.
Positive semidefiniteness of Gram matrix

Let $\pi = \{ V_j \}_{j=1}^\ell$ be a partition of a subset $\tilde{V} \subset V$.
Set $X_j := \sum_{t \in V_j} x_t$, $j = 1, \ldots, \ell$, and let $M = (X_i \cdot X_j)_{i,j=1}^\ell$.
If $a_{i,j}$ is the number of edges between V_i and V_j, $i \neq j$, and $a_{i,i}$ is the number of edges in the subgraph induced by V_i, then

$$M_{i,i} = |V_i| + 2a_{i,i}p + (|V_i|(|V_i|−1)−2a_{i,i})q, \quad M_{i,j} = a_{i,j}p + (|V_i||V_j|−a_{i,j})q.$$

We extensively used the following important inequality: $\det M \geq 0$.

Example: there is no K_5 in $(76, 30, 8, 14)$ SRG.
Positive semidefiniteness of Gram matrix

Let $\pi = \{ V_j \}_{j=1}^{\ell}$ be a partition of a subset $\widetilde{V} \subset V$. Set $X_j := \sum_{t \in V_j} x_t$, $j = 1, \ldots, \ell$, and let $M = (X_i \cdot X_j)_{i,j=1}^{\ell}$. If $a_{i,j}$ is the number of edges between V_i and V_j, $i \neq j$, and $a_{i,i}$ is the number of edges in the subgraph induced by V_i, then

\[
M_{i,i} = |V_i| + 2a_{i,i}p + (|V_i||V_i| - 1 - 2a_{i,i})q, \quad M_{i,j} = a_{i,j}p + (|V_i||V_j| - a_{i,j})q.
\]

We extensively used the following important inequality: $\det M \geq 0$.

Example: there is no K_5 in $(76, 30, 8, 14)$ SRG. Recall that in \mathbb{R}^{18}, we have $(p, q) = (-\frac{4}{15}, \frac{7}{45})$.
Positive semidefiniteness of Gram matrix

Let $\pi = \{ V_j \}_{j=1}^{\ell}$ be a partition of a subset $\tilde{V} \subset V$.

Set $X_j := \sum_{t \in V_j} x_t$, $j = 1, \ldots, \ell$, and let $M = (X_i \cdot X_j)_{i,j=1}^{\ell}$.

If $a_{i,j}$ is the number of edges between V_i and V_j, $i \neq j$, and $a_{i,i}$ is the number of edges in the subgraph induced by V_i, then

$$M_{i,i} = |V_i| + 2a_{i,i}p + (|V_i|(|V_i| - 1) - 2a_{i,i})q, \quad M_{i,j} = a_{i,j}p + (|V_i||V_j| - a_{i,j})q.$$

We extensively used the following important inequality: $\det M \geq 0$.

Example: there is no K_5 in $(76, 30, 8, 14)$ SRG.
Recall that in \mathbb{R}^{18}, we have $(p, q) = (-\frac{4}{15}, \frac{7}{45})$.

If V_1 are the vertices of K_5, with $\ell = 1$ we get a contradiction because

$$\det M = M_{1,1} = 5 + 20p = -1/3.$$
Lower bound on the number of 4-cliques in a SRG: Preliminaries from harmonic analysis
Lower bound on the number of 4-cliques in a SRG: Preliminaries from harmonic analysis

For fixed integers $n \geq 1$, $t \geq 0$, consider homogeneous polynomials

$$P(x_1, \ldots, x_n) = \sum_{t_1, \ldots, t_n \geq 0 \atop t_1 + \cdots + t_n = t} \alpha_{t_1, \ldots, t_n} x_1^{t_1} \cdots x_n^{t_n}$$

satisfying the Laplace’s equation

$$\Delta P = \sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2} P = 0.$$

Spherical harmonic of degree t is the restriction of a polynomial satisfying the above properties to the unit sphere S^{n-1} in \mathbb{R}^n.

Lower bound on the number of 4-cliques in a SRG: Preliminaries from harmonic analysis

For fixed integers $n \geq 1$, $t \geq 0$, consider homogeneous polynomials

$$P(x_1, \ldots, x_n) = \sum_{\sum_{j=1}^{n} t_j = t} a_{t_1, \ldots, t_n} x_1^{t_1} \cdots x_n^{t_n}$$

satisfying the Laplace’s equation

$$\Delta P = \sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2} P = 0.$$

Spherical harmonic of degree t is the restriction of a polynomial satisfying the above properties to the unit sphere S^{n-1} in \mathbb{R}^n.

Let $\mathcal{P}_{n,t}$ be the inner product space of all spherical harmonics of degree t on S^{n-1} with

$$\langle P, Q \rangle = \int_{S^{n-1}} P(z) Q(z) d\mu_n(z).$$
Riesz representation theorem gives a natural mapping \(S^{n-1} \ni x \mapsto P_x \in \mathcal{P}_{n,t} \) such that

\[
\langle P_x, Q \rangle = \int_{S^{n-1}} P_x(z)Q(z) \, d\mu_n(z) = Q(x) \quad \text{for all} \quad Q \in \mathcal{P}_{n,t}.
\]
Riesz representation theorem gives a natural mapping $S^{n-1} \ni x \mapsto P_x \in \mathcal{P}_{n,t}$ such that
\[
\langle P_x, Q \rangle = \int_{S^{n-1}} P_x(z)Q(z)\,d\mu_n(z) = Q(x) \quad \text{for all} \quad Q \in \mathcal{P}_{n,t}.
\]

It is well-known that
\[
\langle P_x, P_y \rangle = Z_{n,t}(x \cdot y), \quad x, y \in S^{n-1},
\]
where $Z_{n,t}(\xi) = \frac{2t+n-2}{n-2} C^{(n-2)/2}_t(\xi)$ is a zonal harmonic and $C^{(\alpha)}_t(\xi)$ are the Gegenbauer polynomials.
Riesz representation theorem gives a natural mapping \(S^{n-1} \ni x \mapsto P_x \in \mathcal{P}_{n,t} \) such that

\[
\langle P_x, Q \rangle = \int_{S^{n-1}} P_x(z)Q(z) \, d\mu_n(z) = Q(x) \quad \text{for all} \quad Q \in \mathcal{P}_{n,t}.
\]

It is well-known that

\[
\langle P_x, P_y \rangle = Z_{n,t}(x \cdot y), \quad x, y \in S^{n-1},
\]

where \(Z_{n,t}(\xi) = \frac{2t+n-2}{n-2} C_t((n-2)/2)(\xi) \) is a zonal harmonic and \(C_t^{(\alpha)}(\xi) \) are the Gegenbauer polynomials.

\(\{ C_t^{(\alpha)}(\xi) \}_{t \geq 0} \) are orthogonal on \([-1, 1] \) with the weight \((1 - \xi^2)^{\alpha-1/2}\), and

\[
\frac{1 - z^2}{(1 - 2\xi z + z^2)^{\alpha+1}} = \sum_{t=0}^{\infty} \frac{t + \alpha}{\alpha} C_t^{(\alpha)}(\xi)z^t.
\]
For any finite sets of points \(\{x_i\}_{i \in I} \) and \(\{y_j\}_{j \in J} \) from \(S^{n-1} \), using the Cauchy-Shwartz inequality in \(P_{n,t} \), we obtain

\[
\left(\sum_{i \in I} \sum_{j \in J} \langle P_{x_i}, P_{y_j} \rangle \right)^2 = \left\langle \sum_{i \in I} P_{x_i}, \sum_{j \in J} P_{y_j} \right\rangle^2 \\
\leq \left\langle \sum_{i \in I} P_{x_i}, \sum_{i \in I} P_{x_i} \right\rangle \left\langle \sum_{j \in J} P_{y_j}, \sum_{j \in J} P_{y_j} \right\rangle \\
= \sum_{i \in I} \sum_{i' \in I} \langle P_{x_i}, P_{x_{i'}} \rangle \sum_{j \in J} \sum_{j' \in J} \langle P_{y_j}, P_{y_{j'}} \rangle.
\]
For any finite sets of points $\{x_i\}_{i \in I}$ and $\{y_j\}_{j \in J}$ from S^{n-1}, using the Cauchy-Shwartz inequality in $P_{n,t}$, we obtain

$$\left(\sum_{i \in I} \sum_{j \in J} \langle P_{x_i}, P_{y_j} \rangle \right)^2 = \left(\sum_{i \in I} P_{x_i}, \sum_{j \in J} P_{y_j} \right)^2$$

$$\leq \left(\sum_{i \in I} P_{x_i}, \sum_{i \in I} P_{x_i} \right) \left(\sum_{j \in J} P_{y_j}, \sum_{j \in J} P_{y_j} \right)$$

$$= \sum_{i \in I} \sum_{i' \in I} \langle P_{x_i}, P_{x_i'} \rangle \sum_{j \in J} \sum_{j' \in J} \langle P_{y_j}, P_{y_{j'}} \rangle.$$

Rewriting this in terms of $Z_{n,t}$ gives the inequality

$$\left(\sum_{i \in I, j \in J} Z_{n,t}(x_i \cdot y_j) \right)^2 \leq \left(\sum_{i, i' \in I} Z_{n,t}(x_i \cdot x_{i'}) \right) \left(\sum_{j, j' \in J} Z_{n,t}(y_j \cdot y_{j'}) \right). \quad (*)$$
We take \(n := g \),
\(\mathcal{I} := V, \ x_i \in S^{n-1} \subset \mathbb{R}^g \) be the Euclidean representation of \(i \), and
\(\mathcal{J} := E, \ y_j := \frac{x_{j(1)}+x_{j(2)}}{\|x_{j(1)}+x_{j(2)}\|} \in S^{n-1}, \) where edge \(j \) joins \(j^{(1)}, j^{(2)} \in V \).
We take \(n := g \),
\(\mathcal{I} := V \), \(x_i \in S^{n-1} \subset \mathbb{R}^g \) be the Euclidean representation of \(i \), and
\(\mathcal{J} := E \), \(y_j := \frac{x_{j(1)} + x_{j(2)}}{\|x_{j(1)} + x_{j(2)}\|} \in S^{n-1} \), where edge \(j \) joins \(j^{(1)}, j^{(2)} \in V \).

If \(N \) is the number of 4-cliques in \(G \), then using strong regularity of \(G \), the inequality (*) reduces to a linear inequality on \(N \).
We take \(n := g \), \(\mathcal{I} := V \), \(x_i \in S^{n-1} \subset \mathbb{R}^g \) be the Euclidean representation of \(i \), and \(\mathcal{J} := E \), \(y_j := \frac{x_{j(1)} + x_{j(2)}}{\|x_{j(1)} + x_{j(2)}\|} \in S^{n-1} \), where edge \(j \) joins \(j^{(1)}, j^{(2)} \in V \).

If \(N \) is the number of 4-cliques in \(G \), then using strong regularity of \(G \), the inequality (*) reduces to a linear inequality on \(N \).

For our \((76, 30, 8, 14)\) SRG, with \(t = 4 \), \(Z_{18,4}(\xi) = 54 - 2160\xi^2 + 7920\xi^4 \), we obtain \(N \geq \frac{2128}{55} > 38 \).
We take $n := g$, $\mathcal{I} := V$, $x_i \in S^{n-1} \subset \mathbb{R}^g$ be the Euclidean representation of i, and $\mathcal{J} := E$, $y_j := \frac{x_{j(1)} + x_{j(2)}}{\|x_{j(1)} + x_{j(2)}\|} \in S^{n-1}$, where edge j joins $j^{(1)}, j^{(2)} \in V$.

If N is the number of 4-cliques in G, then using strong regularity of G, the inequality (*) reduces to a linear inequality on N.

For our $(76, 30, 8, 14)$ SRG, with $t = 4$, $Z_{18,4}(\xi) = 54 - 2160\xi^2 + 7920\xi^4$, we obtain $N \geq \frac{2128}{55} > 38$.

For $t = 4$, the resulting bound on N can be expressed in terms of a rational function of k, r, s of degree ≤ 10 in each variable.
We take \(n := g \),
\(\mathcal{I} := V \), \(x_i \in S^{n-1} \subset \mathbb{R}^g \) be the Euclidean representation of \(i \), and
\(\mathcal{J} := E \), \(y_j := \frac{x_{j(1)} + x_{j(2)}}{\|x_{j(1)} + x_{j(2)}\|} \in S^{n-1} \), where edge \(j \) joins \(j^{(1)}, j^{(2)} \in V \).

If \(N \) is the number of 4-cliques in \(G \), then using strong regularity of \(G \), the inequality (*) reduces to a linear inequality on \(N \).

For our \((76, 30, 8, 14)\) SRG, with \(t = 4 \), \(Z_{18,4}(\xi) = 54 - 2160\xi^2 + 7920\xi^4 \), we obtain \(N \geq \frac{2128}{55} > 38 \).

For \(t = 4 \), the resulting bound on \(N \) can be expressed in terms of a rational function of \(k, r, s \) of degree \(\leq 10 \) in each variable.

It is possible to prove non-existence of \((460, 153, 32, 60)\) SRG using our bound (work in preparation).
We take \(n := g \),
\(\mathcal{I} := V \), \(x_i \in S^{n-1} \subset \mathbb{R}^g \) be the Euclidean representation of \(i \), and
\(\mathcal{J} := E \), \(y_j := \frac{x_{j(1)} + x_{j(2)}}{\|x_{j(1)} + x_{j(2)}\|} \in S^{n-1} \), where edge \(j \) joins \(j^{(1)}, j^{(2)} \in V \).

If \(N \) is the number of 4-cliques in \(G \), then using strong regularity of \(G \), the inequality (*) reduces to a linear inequality on \(N \).

For our \((76, 30, 8, 14)\) SRG, with \(t = 4 \), \(Z_{18,4}(\xi) = 54 - 2160\xi^2 + 7920\xi^4 \), we obtain \(N \geq \frac{2128}{55} > 38 \).

For \(t = 4 \), the resulting bound on \(N \) can be expressed in terms of a rational function of \(k, r, s \) of degree \(\leq 10 \) in each variable.

It is possible to prove non-existence of \((460, 153, 32, 60)\) SRG using our bound (work in preparation).

Positive linear combinations of Gegenbauer polynomials are essentially our only choices of zonal functions (Schoenberg).
Outline of the proof:

- K_4 is a subgraph of $(76, 30, 8, 14)$ SRG;
- $(76, 30, 8, 14)$ SRG contains (as an induced subgraph) one of the three “larger” subgraphs;
- eliminating the case of $(40, 12, 2, 4)$ SRG;
- eliminating the case of $\overline{K_{16}}$;
- eliminating the case of $K_{6,10}$.

Techniques:

- Euclidean representation of SRGs by systems of unit vectors;
- positive semidefiniteness (and rank) of Gram matrix;
- Cauchy-Shwartz inequality in the space of spherical harmonics;
- projections of Euclidean representation;
- various combinatorial counting arguments;
- two insignificant computer searches.
References:

- A. V. Bondarenko, A. Prymak, and D. Radchenko, Supplementary files for the proof of non-existence of $SRG(76, 30, 8, 14)$, http://prymak.net/SRG-76-30-8-14/