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A �nite, undirected, simple graph G = (V ,E ) with vertices V and edges E

is strongly regular with parameters (v , k , λ, µ) if:

|V | = v ,

G is k-regular,

any two adjacent vertices have λ common neighbors, and

any two non-adjacent vertices have µ common neighbors.

In terms of incidence matrix A:

AJ = kJ, and A2 + (µ− λ)A + (µ− k)I = µJ,

where I is the identity matrix and J is the matrix with all entries equal to 1.
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Relation

(v − k − 1)µ = k(k − λ− 1)

is immediate. A has only three eigenvalues:

k of multiplicity 1,

r =
1

2

(
λ− µ +

√
(λ− µ)2 + 4(k − µ)

)
of multiplicity f =

1

2

(
v − 1−

2k + (v − 1)(λ− µ)√
(λ− µ)2 + 4(k − µ)

)
,

s =
1

2

(
λ− µ−

√
(λ− µ)2 + 4(k − µ)

)
of multiplicity g =

1

2

(
v − 1 +

2k + (v − 1)(λ− µ)√
(λ− µ)2 + 4(k − µ)

)
.

The above relation and the condition that f and g have to be non-negative

integers de�ne a family of parameters (v , k , λ, µ) for which the corresponding
SRG might exist.

For (v , k , λ, µ) = (76, 30, 8, 14), we have r f = 257 and sg = (−8)18.
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There are families and particular instances of positive and negative results

on existence of SRG, see electronically published tables by Brouwer.

Unknown cases for small v :

(65, 32, 15, 16),
(69, 20, 7, 5),
(75, 32, 10, 16),
(76, 30, 8, 14) � our case,

(76, 35, 18, 14),
ten more cases with 85 ≤ v ≤ 100.

Note that inverting edges leads to a related SRG.
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Outline of the proof:

K4 is a subgraph of SRG (76, 30, 8, 14);

SRG (76, 30, 8, 14) contains (as an induced subgraph) one of the three

�larger� subgraphs;

eliminating the case of SRG (40, 12, 2, 4);

eliminating the case of 16-coclique;

eliminating the case of K6,10.

Techniques:

Euclidean representation of SRGs - systems of points on the sphere;

positive de�niteness (and rank) of Gram matrix;

projections of Euclidean representation;

Cauchy-Shwartz in the space of spherical harmonics;

various counting arguments, including �frequencies� lemma;

two insigni�cant computer searches.
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Euclidean representation {xi : i ∈ V } of a SRG G in Rg :

A − sI is positive semide�nite, therefore A − sI = (zi · zj)i ,j∈V for some

{zi : i ∈ V } ⊂ Rg ; de�ne xi := zi/‖zi‖, i ∈ V .

xi · xj =


1, if i = j ,

p, if i and j are adjacent,

q, otherwise,

where p = s/k , and q = −(s + 1)/(v − k − 1).

The set {xi : i ∈ V } forms a spherical 2-design, i.e.,∑
i∈V

xi = 0, and
∑
i∈V

(xi · y)2 =
|V |
g

for any y , ‖y‖ = 1.

6



Euclidean representation {xi : i ∈ V } of a SRG G in Rg :

A − sI is positive semide�nite, therefore A − sI = (zi · zj)i ,j∈V for some

{zi : i ∈ V } ⊂ Rg ; de�ne xi := zi/‖zi‖, i ∈ V .

xi · xj =


1, if i = j ,

p, if i and j are adjacent,

q, otherwise,

where p = s/k , and q = −(s + 1)/(v − k − 1).

The set {xi : i ∈ V } forms a spherical 2-design, i.e.,∑
i∈V

xi = 0, and
∑
i∈V

(xi · y)2 =
|V |
g

for any y , ‖y‖ = 1.

6



Euclidean representation {xi : i ∈ V } of a SRG G in Rg :

A − sI is positive semide�nite, therefore A − sI = (zi · zj)i ,j∈V for some

{zi : i ∈ V } ⊂ Rg ; de�ne xi := zi/‖zi‖, i ∈ V .

xi · xj =


1, if i = j ,

p, if i and j are adjacent,

q, otherwise,

where p = s/k , and q = −(s + 1)/(v − k − 1).

The set {xi : i ∈ V } forms a spherical 2-design, i.e.,∑
i∈V

xi = 0, and
∑
i∈V

(xi · y)2 =
|V |
g

for any y , ‖y‖ = 1.

6



For (v , k , λ, µ) = (76, 30, 8, 14), we have r f = 257 and sg = (−8)18.
In R18, (p, q) = (− 4

15
, 7
45

).
In R57, (p, q) = ( 1

15
,− 1

15
) (edge inversion).

Example: no K5 in SRG (76, 30, 8, 14).
Otherwise, if x1, . . . , x5 are the points in R18 corresponding to K5, then

0 ≤ (x1 + · · ·+ x5)2 = 5 + 20p = −1/3, contradiction.
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Towards the lower bound on the number of 4-cliques in a SRG:

Spherical harmonics

A homogeneous real algebraic polynomial of degree t on Rn is a real lin-

ear combination of monomials x t11 . . . x tnn , where t1, . . . , tn are non-negative

integers with sum t.

An algebraic polynomial P on Rn is said to be harmonic if ∆P = 0, where

∆ =
∑n

j=1
∂2

∂x2
j

is the Laplace operator.

For integer t ≥ 1, the restriction to the unit sphere Sn−1 in Rn of a homo-

geneous harmonic polynomial of degree t is called a spherical harmonic of

degree t.

The vector space of all spherical harmonics of degree t on Sn−1 will be

denoted by Pn,t .
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We can equip Pn,t with the inner product

〈P,Q〉 =

∫
Sn−1

P(x)Q(x) dµn(x),

where µn is the Lebesgue measure on Sn−1 normalized by µn(Sn−1) = 1.

By the Riesz representation theorem, for each point x ∈ Sn−1, there exists

a unique polynomial Px ∈ Pn,t satisfying
〈Px ,Q〉 = Q(x) for all Q ∈ Pn,t .

There is a representation through zonal harmonic Zn,t :

〈Px ,Py 〉 = Zn,t(x · y), x , y ∈ Sn−1.

We have Zn,t(ξ) = 2t+n−2
n−2 C

((n−2)/2)
t (ξ), where C

(α)
t (ξ) are the Gegenbauer

polynomials.

The polynomials C
(α)
t (ξ) of degree t are orthogonal on [−1, 1] with the

weight (1 − ξ2)α−1/2, and can be de�ned (among other ways) from the

generating function

1− z2

(1− 2ξz + z2)α+1
=
∞∑
t=0

t + α

α
C

(α)
t (ξ)z t .
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Using the Cauchy-Shwartz inequality in Pn,t , for any �nite sets of points
{xi}i∈I and {yj}j∈J from Sn−1, we obtain ∑

i∈I,j∈J

〈Pxi
,Pyj
〉

2

=

〈∑
i∈I

Pxi
,
∑
j∈J

Pyj

〉2

≤

〈∑
i∈I

Pxi
,
∑
i∈I

Pxi

〉〈∑
j∈J

Pyj
,
∑
j∈J

Pyj

〉
=
∑

i,i ′∈I

〈Pxi
,Pxi′ 〉

∑
j,j′∈J

〈Pyj
,Pyj′ 〉.

Rewriting this in terms of Zn,t provides the key inequality ∑
i∈I,j∈J

Zn,t(xi · yj)

2

≤

∑
i,i ′∈I

Zn,t(xi · xi ′)

 ∑
j,j′∈J

Zn,t(yj · yj′)

 . (1)
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With n = g , we choose xi ∈ Rg to be the Euclidean representation of

i ∈ V = I, and yj :=
x
j(1)

+x
j(2)

‖x
j(1)

+x
j(2)
‖ for all edges j ∈ E = J , here j joins the

vertices j (1), j (2) ∈ V .

If N is the number of 4-cliques in G , then using strong regularity of G , the

inequality (1) reduces to a linear inequality on N.

For our SRG (76, 30, 8, 14), with t = 4, we obtain N ≥ 39.

For t = 4, the resulting bound on N can be expressed in terms of a rational

function of k , r , s of degree ≤ 10 in each variable.

It is not hard to prove non-existence of SRG (460, 153, 32, 60) using our

bound (work in preparation).

Positive linear combinations of Gegenbauer polynomials are essentially our

only choices of zonal functions (Schoenberg).
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Outline of the proof (reminder):

K4 is a subgraph of SRG (76, 30, 8, 14);

SRG (76, 30, 8, 14) contains (as an induced subgraph) one of the three

�larger� subgraphs;

eliminating the case of SRG (40, 12, 2, 4);

eliminating the case of 16-coclique;

eliminating the case of K6,10.
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�Frequencies� lemma.

Let H be a subgraph of G , m = |H|, de�ne

dj := |{x ∈ H : there are exactly j edges from x to vertices in H}|
bj := |{x ∈ G \ H : there are exactly j edges from x to vertices in H}|.

Then ∑
j≥0

bj = v −m,

∑
j≥0

jbj = mk −
∑
j≥0

jdj , and

∑
j≥0

(
j

2

)
bj =

(
m

2

)
µ−

∑
j≥0

(
j

2

)
dj +

1

2
(λ− µ)

∑
j≥0

jdj .

If G is SRG (76, 30, 8, 14) and H = K4, (dj)j≥0 = (0, 0, 0, 4, 0, 0, . . . ),
b4 = 0, and the above system provides (bj)j≥0 = (0, 36, 36, 0, 0, 0 . . . ).
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Setting G0 = K4, we can partition G into {G0,G1,G2}, where Gj is the

subgraph of G \ G0 with vertices connected to exactly j vertices of G0.

By above, |G1| = |G2| = 36.

By strong regularity, {G0,G1,G2} is an equitable partition of G with degree

matrix

D{G0,G1,G2} =

 3 1 2

9 11 18

18 18 10

 .

Case 1: G2 has no triangles � leads to SRG (40, 12, 2, 4) (easier).

Case 2: G2 has a triangle G3 � leads to a 16-coclique or to a K6,10 (harder,

various subcases need to be considered depending on the edges between G3

and G0; application of the �frequency� lemma for H = G0 ∪ G3 is the �rst

step in each subcase).

Case 1: G̃ := G0 ∪ G1 will be the required SRG (40, 12, 2, 4).
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For x ∈ G̃ let Hx = G2 ∩ N(x), then |Hx | = 18.

As G2 has no triangles, by strong regularity each edge of G2 belongs to

exactly 8 triangles, where all 8 �third� vertices belong to G̃ .

The average number of edges in Hx over all x ∈ G̃ is precisely 180·8
40

= 36.

Fix x ∈ G̃ , let w be the number of edges in Hx .

We will obtain that w ≤ 36 using Euclidean representation.

Suppose x ∈ G1. Consider the partition π = {G0,Hx , {x}} of 4+18+1 = 23

vertices of G .

The quantities of edges in and between the corresponding subgraphs form

the edge matrix of the partition

Eπ =

6 2 · 18 1

w 18

0

 .
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Let π = {V1, . . . ,Vl} be a partition of a subset Ṽ ⊂ V of the vertices of a

(v , k , λ, µ) SRG graph G = (V ,E ).
Let {xi : i ∈ V } be the Euclidean representation of G in Rg .

Set Xj :=
∑

i∈Vj
xi , j = 1, . . . , l , and let M(π, p, q) = (Mi ,j) be the Gram

matrix of Xj , i.e., Mi ,j := Xi · Xj , i , j = 1, . . . , l .
If π has edge matrix Eπ = (ai ,j)

l
i ,j=1, and mj = |Vj |, then the entries of

M(π, p, q) can be computed as follows:

Mi ,i = mi + 2ai ,ip + (mi (mi − 1)− 2ai ,i )q, Mi ,j = ai ,jp + (mimj − ai ,j)q.

We have the following important inequality: detM(π, p, q) ≥ 0.

For our situation, detM(π, p, q) = 722
1125

(36− w) ≥ 0, so w ≤ 36.
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(v , k , λ, µ) SRG graph G = (V ,E ).
Let {xi : i ∈ V } be the Euclidean representation of G in Rg .

Set Xj :=
∑

i∈Vj
xi , j = 1, . . . , l , and let M(π, p, q) = (Mi ,j) be the Gram

matrix of Xj , i.e., Mi ,j := Xi · Xj , i , j = 1, . . . , l .
If π has edge matrix Eπ = (ai ,j)

l
i ,j=1, and mj = |Vj |, then the entries of

M(π, p, q) can be computed as follows:

Mi ,i = mi + 2ai ,ip + (mi (mi − 1)− 2ai ,i )q, Mi ,j = ai ,jp + (mimj − ai ,j)q.

We have the following important inequality: detM(π, p, q) ≥ 0.

For our situation, detM(π, p, q) = 722
1125

(36− w) ≥ 0, so w ≤ 36.

16



If detM(π, p, q) = 0, the vectors Xj are linearly dependent and for some

λj we obtain
∑

j λjXj = 0. For any vertex z ∈ G , let ej be the number of

neighbors of z in Gj . Then xz · (
∑

j λjXj) = 0 becomes∑
j :z 6∈Vj

λj(pej + q(|Vj | − ej)) +
∑

j :z∈Vj

λj(1 + pej + q(|Vj | − 1− ej)) = 0.

For π = {V1,V2,V3} = {G0,Hx , {x}}, we have (λ1, λ2, λ3) = (1, 1/4, 1).
If z ∈ G1 is adjacent to x , then e1 = e3 = 1, so e2 = 6.

If z ∈ G1 is not adjacent to x , then e1 = 1, e3 = 0, so e2 = 10.

Also true for z ∈ G0. In summary, for any z ∈ G̃ , the number of neighbors

of z in Hx is equal to 6 or 10 when z is or is not adjacent to x , respectively.

Therefore, any pair of adjacent vertices in G̃ has 8 common neighbors in G ,

6 of which are in G2, so exactly 8 − 6 = 2 are in G̃ . Similarly, any pair of

non-adjacent vertices in G̃ has exactly 14− 10 = 4 neighbors in G̃ .

This establishes that G̃ is SRG (40, 12, 2, 4).
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One can prove not only that G̃ is a SRG (40, 12, 2, 4), but also that for any

z ∈ G \ G̃ both N(z) ∩ G̃ and N ′(z) ∩ G̃ are 4-regular subgraphs with 20

vertices, and |N(z1) ∩ N(z2) ∩ G̃ | = 8 for any adjacent z1, z2 ∈ G \ G̃ .

Idea: projection of Euclidean representation

One can prove that rank(lin({xi , i ∈ G̃})) = 16.

For j ∈ G \ G̃ , denote by x ′j the projection of xj onto lin{xi , i ∈ G̃}.
For j (1), j (2) ∈ G \ G̃ , the goal is to compute the dot product x ′′

j(1)
· x ′′

j(2)
,

where x ′′j = xj − x ′j is the projection of xj onto the orthogonal complement

of lin{xi , i ∈ G̃}, which is a 18− 16 = 2-dimensional Euclidean space.

We obtain

x ′j = −1

9

∑
i∈N(j)∩G̃

xi +
1

18

∑
i∈N′(j)∩G̃

xi .

18
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With nj(1),j(2) := |N(j (1)) ∩ N(j (2)) ∩ G̃ |, we can prove that

x ′
j(1)
· x ′

j(2)
=

19

270
nj(1),j(2) −

52

81
.

Our construction yields nj(1),j(2) = 20 if j (1) = j (2), so all ‖x ′j‖ are equal

(j ∈ G \ G̃ ), and hence all ‖x ′′j ‖ are equal. This means that all x ′′j belong to

a (2-dimensional, planar) circle.

The normalized projections x ′′′j :=
x ′′j
‖x ′′

j
‖ can be computed by

x ′′′
j(1)
· x ′′′

j(2)
= − 3

10
nj(1),j(2) +

17

5
.

In particular, if j (1) and j (2) are adjacent, nj(1),j(2) = 8, so x ′′′
j(1)
· x ′′′

j(2)
= −4

5
.
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WLOG, {x ′′′i , i ∈ G \ G̃} attains only two values: (1, 0) and (−4
5
, 3
5

).

If (−4
5
,−3

5
) is also attained, then for the corresponding

vertices x ′′′
j(1)
· x ′′′

j(2)
= 7

25
leading to nj(1),j(2) = 52

5
.

But then clearly ∑
i∈G\G̃

x ′′′i 6= (0, 0).

On the other hand,
∑

i∈G xi = 0 and x ′′i = (0, 0) for i ∈ G̃ , so∑
i∈G\G̃

x ′′i = (0, 0),

which is a contradiction completing the case of SRG (40, 12, 2, 4).
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If G contains a 16-coclique G̃ , we establish x ′′′
j(1)
· x ′′′

j(2)
∈ {1,−1

2
} on the

unit circle. WLOG, x ′′′j = (cos(tπ/3), sin(tπ/3)), j ∈ Ht , t = 1, 2, 3,

where G \ G̃ = H1 ∪ H2 ∪ H3. Then
∑

j∈G\G̃ x ′′′j = (0, 0), which implies

|H1| = |H2| = |H3| = 20.

Next we establish that H1 is 2-regular, so it is a union of cycles. Further

analysis yields that there are at least four cycles in H1, and each of them

has an even length. Hence, there is a cycle C4 ⊂ H1 of length 4.
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Suppose that G̃ = {g1, . . . , g16}. For i ∈ H1, de�ne A(i) as the 8-element

subset of {1, 2, . . . , 16} such that N(i) ∩ G̃ = {gt : t ∈ A(i)}.

If i , j ∈ H1 are adjacent, then |A(i) ∩ A(j)| = 2;

if i , j ∈ H1 are disjoint, then |A(i) ∩ A(j)| = 4.

{A(i) : i ∈ C4} = {{1, 2, 3, 4, 5, 6, 7, 8}, {1, 2, 9, 10, 11, 12, 13, 14},
{5, 6, 7, 8, 13, 14, 15, 16}, {3, 4, 9, 10, 11, 12, 15, 16}}.

Let M be the collection of all 8-element subsets of {1, 2, . . . , 16},
|M| =

(
16
8

)
= 12870.

De�ne the following graph on M:

two vertices (subsets) A1,A2 ∈M are adjacent i� |A1 ∩ A2| ∈ {2, 4}.
With M0 := {A(i) : i ∈ C4}, |M0| = 4, let

M1 := {A ∈ M : A is adjacent to all vertices of M0}. Then |M1| = 906

and this subgraph will have 176672 edges.

Clearly, {A(i) : i ∈ H1 \ C4} is a 16-clique in M1.

But the largest clique in M1 has size 15, which can be veri�ed using

clique_number function of Sage based on the Bron-Kerbosch algorithm.
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In the remaining case of K6,10, the computations of projections lead to dot

products from {−1, 0, 1} in a 3-dimensional space.

We obtain vertices of an

octahedron. If H1 and H2 are the subgraphs (of G \ G̃ ) corresponding to two

opposite vertices of the octahedron (|H1| = |H2| = 10), we can establish

that in the subgraph H1 ∪H2 one has |N(t)∩H1| = 8+ |N(t)∩H2| for any
t ∈ H1, and |N(t) ∩ H2| = 8 + |N(t) ∩ H1| for any t ∈ H2.

The main idea for the completion of the proof is to verify (with an assistance

of a computer algebra system) that all such subgraphs U = H1 ∪ H2 fail to

satisfy the following statement:

Each subset {xi : i ∈ U}, where U ⊂ V , has a non-negative de�nite Gram

matrix (xi · xj)i ,j∈U of rank equal to the rank of the linear span of

{xi : i ∈ U}. If A is the adjacency matrix of the subgraph induced by U,

then (xi · xj)i ,j∈U = pA + I + q(J − I − A).
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